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Variational Modeling
Basic Techniques
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Calculus of Variation

Basic Idea:
e We look at a set of functionsf: S— D
e We define an “energy functional” E: (S— D) > R

= A functional assigns real numbers to functions
= Each function gets a “score”
= “Energy” means: the smaller the better
e We set up additional requirements (“constraints”) on f.
= Soft constraints — violation increases energy.

= Hard constraints — violation not allowed.

e We then compute the function(s) f that minimize E.



Calculus of Variation

Very general framework:

e Alot of problems can be directly formulated as variational
problems.

e Example 1:
= We are looking for a curve.

= |t should be as smooth as possible (energy = non-smoothness).
= |t should go through a number of points (hard constraints).
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Calculus of Variation

Another example:
e Problem: We want to go to the moon.
e Given:

= Orbits of moons, planets and star(s).
= Flight conditions (athmosphere, gravitation of stellar bodies)
e Unknowns:

= Throttle (magnitude, direction) from rocket motors (vector
function)

e Energy function:
= Usage of rocket fuel (the fewer the better)
= Perhaps: Overall travel time (maybe not longer than a week)



Calculus of Variation

To the moon:

e Constraints:

= We want to start in Cape Canaveral (upright trajectory) and end
up on the moon.

= We do not want to hit moons or planets on our way.

= We want to approach the moon at no more than 20 km/h
relative speed upon touchdown.

= The rocket motor has a limited range of forces it can create (not
more than a certain thrust, no backward thrust)

So flying to the moon is just minimizing a functional.
(ok, this is slightly simplified)



A Simple Example

Simple example: variational splines
e Energy:

= We want smooth curves
= Smooth translates to minimum curvature
= Quadratic penalty:

E(f)= j| curvature,(t)|* dt

curve

e
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A Simple Example

Simple example: variational splines
e Energy:

= Problem: curvature is non-linear

= Easier to minimize: second derivatives
- -2

E(f)= | |=f()| dt

curve




A Simple Example

Simple example: variational splines
e Soft constraints

= Parameter values t,,...,t, at which we
should approximate points p,, ..., p,.:

E(f)= | L‘f f(t)} dtMZ(f(t) p,)

= A controls (lack of) smoothness.
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A Simple Example

Simple example: variational splines

e Soft constraints
= Specify the accuracy by error quadrics Q, ..., Q,:

E(f): jl {%f(t)} dt—l_i(f(ti)_pi)TQi(f(ti)_pi)

t=tq
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Rank-Deficient Quadrics

The rank deficient error quadric trick:
e A rank-1 matrix constraints the curve in one direction only
e E.g.: Point-to-surface constraints

12



Numerical Treatment

Numerical computation:
e No closed form solution

= Discretize (finite dimensional function space)
= Solve for coefficients (coordinate vector in this function space)
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Finite Differences

FD solution:

e Represent curve as array of k values:
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Discretized Energy Function

Discretized Energy Function:
e Energy is a squared linear expression

= Quadratic discrete objective function

e Constraints are quadratic by construction
e Solution by linear system

B= | Lj’tzf(t)} de+ Y(f(e) -, ) Q(fCe,)-p,)

t=tq

| kfy 2y +y. [ &
E(dlscr) (f) — Z|:YI1 Iz;l - YI+1 i| " Z(yindex(ti) - pi )T Qi <Yindex(t,-) B pl)
i=1 i=1

(neglected here: handling boundary values)
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Summary

Summary:
e Variational approaches look like this:

compute argminE( f),
feF

E(f) _ E(data)(f) + E(regularizer) (f) ,

f eF={f] f satifieshard constraints}

e Connection to statistics:

= Bayesian maximum a posteriori estimation
= [ldata) js the data likelihood (log space)
« [Elregularizer) js g prior distribution (log space)
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Variational Toolbox
Data Fitting, Regularizer Functionals,
Discretizations



Toolbox

In the following:

 We will discuss...
= ...useful standard functionals.
= ...how to model soft constraints.
= ...how to model hard constraints.
= ...how to discretize the model.

e Then snap & click your favorite custom variational
modeling scheme.

e (Click & snap means: add together to a composite energy)
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Functionals



Functionals

Standard Functional #1: Function norm
e Given a functionf: R"o>Q — R”
e Minimize:

E(Zero) (f) _ J'f(X)Z dx

e Function values should not become too large

e Often useful to avoid numerical problems

= Adding AE?¢r°) to quadratic energy:
smallest eigenvalue bounded by A (— condition number)

= System always solvable
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Functionals

Standard Functional #2: Harmonic energy
e Given a functionf: R">Q — R"
e Minimize:
E(harmonic)(f) _ I(Vf(x))z dx
Q

e Differences to neighboring points as small as possible
e Appears all the time in physics & engineering

21



Harmonic Energy

Example: Heat equation
e Metal plate
e Hard constraints:

= Heat source

= Heat sink
e Final heat distribution?

= Heat flow tends to equalize temperature.

heat sink heat source

— Stronger heat flow for larger temperature gradients.
= Gradients become as small as possible.
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Harmonic Energy

Example: Harmonic energy

e Curves that minimize the harmonic energy:
= Shortest path, a.k.a. polygons

TN

e Two-dimensional parametric surface:
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Surface Example

Surface fitting with Laplacian Regularizer:
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Data attraction: point-to-plane, Gaussian window
Regularizer: minimize triangle edge length
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Functionals

Standard Functional #3: Thin plate spline energy
e Given a functionf: R">Q — R"
e Minimize:

E(TSS) (f) _ Iii 62 f(X) Jx

e Objective: minimize integral second derivatives
(approx. curvature)

e “Be smooth”:
= Yields smooth curves & surfaces
= A true curvature based energy is rarely used (non-quadratic)
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Energies for Vector Fields

Vector fields:
e Now consider volume deformations: R” —> R”
e Think of an object moving (over time).

= f(x) describes its deformation.
= f(x,t) describes its motion over time.

f: R"—> R"

i
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Functionals

Standard Functional #4: Green’s deformation tensor
e Givenafunctionf:R">0Q — R”
e Minimize:

ECrm™ (£)= [[MvE"vE 1| dx
Q

e Objective: minimize metric distortion
= First fundamental form

e Physically-based deformation modeling:
= Invariant under rigid transformations.
= Bending, scaling, shearing is penalized.
= Energy is non-quadratic (4-th order).
= 9x9 Matrix M encodes material properties (often M =1).
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Functionals

Standard Functional #5: Volume preservation
e Given a functionf:R">Q — R”
e Minimize:
EUtm)(£) = [[det(VE) 1] dx
Q

e Objective: minimize local volume changes
e This energy tries to preserve the volume at any point.
= Incompressible materials (for example fluids)

= Invariant under rigid transformations
= Non-quadratic (6th-order in 3D)
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Functionals

Standard Functional #6: Infinitesimal volume preservation
e Velocityv: R">Q — R”
e Minimize:

Evelume) (y) = jdwv(x) dx = j (—v(x)+ +iv(x))

X, OX

n
e Objective: minimize local volume changes in a velocity
field

e Difference to the previous case:

= The vectors are instantaneous motions (v(x) = d/dt f(x,t))

= A divergence free (time dependent) vector field will not
introduce volume changes

= Linear, but works only for small time steps
= Large (rotational) displacements are not covered
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Functionals

Standard Functionals #7 & #8: Velocity & acceleration
e Given a functionv: (R"xR) o Q — R”
e Minimize:

EU(f) = [ (—f(x t)j dxdt, E“(f)= || (—f(x t)) dxdt

e Objective: minimize velocity / acceleration
e Models air resistance, inertia.
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Soft Constraints



Soft Constraints

Penalty functions
e Uniform
e General quadrics
e Differential constraints

Types of soft constraints
e Point-wise constraints
e Line / area constraints

Constraint functions
e Least-squares
e M-estimators
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Uniform Soft Constraints

Uniform, point-wise soft constraints:

e Givenafunctionf:R">0Q — R”
e Minimize:

Em(£) = Zn:qi () -y

constraint weights (certainty)

prescribed values (x,y).
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Uniform Soft Constraints

General quadratic, point-wise soft constraints:

e Givenafunctionf:R">0Q — R”
e Minimize:

E(consb")(f) — i(f(xl ) -y, )T Qi (f(xi)—y,-)

constraint weights (general quadratic form, non-negative)

prescribed values (x,y).
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Uniform Soft Constraints

Differential constraints:
e Given a functionf: R">Q — R”
e Minimize:
E(conm)(f) = Z(Df(xi )— (DY)i )T Q, (Df(xi )— (DY)i )

constraint weights (general quadratic form, non-negative)

prescribed values (x,Dy).

11" Iy 1

Differential operator: b=

OX; .0X,

This is still a quadratic constraints (— linear system).
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Examples

Examples of differential constraints:

e Prescribe normal orientation of a surface
2
_au

f:R*>R°, E“"")(f)=¢q||-0, f-n
1

e Prescribe rotation of a deformation field
£:R® >R, E“)(f)=q|Vi-R|
e Prescribe velocity or acceleration of a particle trajectory

f:R°xR—>R’ f(x,t)=pos, E“""(f)= q(x,t)(f(x,t) —a(x,t))z

36



Line / Area Soft Constraints

Line and area constraints:
e Given a functionf: R">Q — R”
e Minimize:

E ()= [(F)-y(x)' Q(f(x) - y(x)

AcQ

quadric error weights (may be position dependent)
prescribed values y(x) (function of position x)

area A < Q on which the constraint is placed (line, area, volume...)

e A.k.a: “transfinite constraints”
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Constraint Functions

Constraint Functions:

e Typical: quadratic constraints E(x) = f(x)?
= Easy to optimize (linear system)
= Well-defined critical point (gradient vanishes)
= However: sensitive to outliers

e Alternatives for bad data:
= L,-norm constraints (E(x) = |f(x)])
— more robust
— still convex, i.e. can be optimized
= Truncated constraints
— even more robust
— non-convey, difficult to optimize
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Discretization



Finite Element Discretization

Finite-element discretization:
e Finite dimensional space spanned by basis functions
e Finite differences (FD)

= Special case
= Grid of piecewise constant basis

e General approach:

argminE(f)— argminE(E)
f A

E(X) = Zﬂ’ibi(x)

40



Finite Element Discretization

Derive a discrete equation:
e Just plugin the discretef.
e Then minimize the it over the A.
e Compute the critical point(s):
E(E (x))—) min

0

o E(}:ﬂ,(x)):o

—=Vi=1.k:

e Quadratic functionals: linear system.

e Non-linear, smooth functionals:
Newton, Gauss-Newton, LBFGS, or the similar

41



Example

(Abstract) example:
e Minimize square integral of a differential operator
e Quadratic differential constraints
e Yields quadratic optimization problem in the coefficients
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Example

(Abstract) example (cont):
E()= [0V fC0f dx+ iy (0 fx) -y, |

E(x)iz,-b,-(x)

E(?z) :j D(l)zk:/’i‘ibi(x)J dx"‘ﬂzn:(D(Z)Zk:/libi(x)_yz'j

O i=1 i=1

2,[DDp, kx)] dx + yZ(ZZ D®p (x)- y,j

E[ i =1\ i=1
>

i=1 j=1

2,2, {[DDb, [x)[D®b, [x)dx + yi(iziD(ZJbi (x)- y,.]z

=1\ i=1
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Numerical Aspects



How to solve the problems?

Solving the discretized variational problem:

e Quadratic energy and quadratic constraints:

The discretization is a quadratic function as well.
The gradient is a linear expression.
The matrix in this expression is symmetric.

If the problem is well-defined, the matrix is semi-positive
definite.

It is usually very sparse (coefficients of basis functions only
interact with their neighbors, as far as their support overlaps).

We can use iterative sparse system solvers:

— Most frequently used: conjugate gradients (needs SPD
matrix). CG is available in GeoX.
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How to solve the problems?

Solving the discretized variational problem:

* Non linear energy functions:

If the function is convex, we can get to a critical point that is the global
minimum.

In general, we can only find a local optimum (or critical point).
— Need a good initialization

Newton optimization:

— 2nd order Taylor expansions (Hessian matrix, gradient)

— Iteratively solve linear problems.

— Typically, Hessian matrices are sparse. Use conjugate gradients to
solve for critical points.

Non-linear conjugate gradients: with line search (faster than simple
gradient decent).

LBFGS: Black box-solver, only needs gradient.
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Hard Constraints



Hard Constraints

Hard Constraints:
e Properties of the solution to be met exactly
e Three options to implement hard constraints:

= Strong soft constraints (easy, but not exact)
= Variable elimination (exact, but limited)
= Lagrange multipliers (most complex and general method)

48



Hard Soft Constraints

Simplest Implementation:
e Soft constraints with large weight
E(f) _ E(regularizer) (f)_l_lE(Constr‘aints) (f); Wlth ivery large (Say 106)

e A few serious problems:
= Technique is not exact
— Might be not acceptable for some applications
= The stronger the constraints, the larger the weight. This means:

— The condition number of the quadric matrix (condition of
the Hessian in the non-linear case) becomes worse.

— At some point, no solution is possible anymore.
— Iterative solvers are slowed down (e.g. conjugate gradients)

49



Variable Elimination

Idea: Variable elimination
e We just replace variables by fixed numbers.
e Then solve the remaining system.

Example:

4.5
4.0

2y y, 8
*Wa y, 25 Ve 77

f’(Xo) = h_l(yl —4.0)

f'(X3) = h_l(y4 — y3)



Variable Elimination

Advantages:
e Exact constraints
e Conceptually simple

Problems:
e Only works for simple constraints (variable = value)

e Need to augment system
= Not easy to implement generically

e Does not work for FE methods (general basis functions)
= Values are sum of scaled basis functions
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Lagrange Multipliers

Most general technique: Lagrange multipliers
e Works for complex, composite constraints
e General basis functions
e Exact solutions (no approximation)
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Lagrange Multipliers

Here is the idea:

e Assume we want to optimize E(x,, ..., x,) subject to an
implicitly formulated constraint g(x,, ..., x,) = 0.

e This looks like this:
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Lagrange Multipliers

Formally:
e Optimize E(x,, ..., x,) subject to g(x, ..., x,) = 0.

e Formally, we want:
VE(x)=AVg(x) and g(x)=0

e We get a local optimum for:
LG(x)=E(x)+ Ag(X)
Ve, LG(x)=0
ie.:(0, .0, ,0, LG(x)=0

e A critical point of this equation

Xl JLLL)

VE

satisfies both VE(x) = 1Vg(x)

VE = Vg
and g(x)=0.



Example

Example: Optimizing a quadric subject to a linear
equality constraint
« We want to optimize: E(x)=x'Ax+bx
e Subjectto: g(x)=mx+n=0

We obtain:
o LG(x)=E(x)+Ag(x)=x"Ax+bx + A(mx +n)
V_ (LG(x))=2Ax+b+/ m
V,(LG(x))=mx+n

: 2A m\ x —b
e Linear system: —
m' 0 )\A —n
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Multiple Constraints

Multiple Constraints:

e Similar idea

e Introduce multiple “Lagrange multipliers” A.

E(x)— min
subjectto: Vi=1..k:g.(x)=0

Lagrangian objective function:
k
LG(x)=E(x)+ Z/ligi (%)
i=1
V,aLG(x)=0
ie.:(0, 0, ,0, @, JLG(X)=0

Xl JLLLY
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Multiple Constraints

Example: Linear subspace constraints
e E(x)=x"Ax+bx subjectto g(x)=Mx+n=0

* LG(X) :E(X)Jrzn:/%igi(x) :xTAx+bx+Zn:/1i (mix+ni)
i=1 i=1

e Linear system: =
M 0 \A —n

e Remark: M must have full rank for this to work.
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What can we do with this?

Multiple linear equality constraints:

e Constraint multiple function values, differential
properties, integral values

e Area constraints: Sample at each basis function of the
discretization and prescribe a value

e Need to take care:

= We need to make sure that the constraints are linearly
independent at any time

Inequality constraints:

e There are efficient quadratic programming algorithms.

(Idea: turn on and off the constraints intelligently.)
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Manifold Constraints



Optimization on Unit Sphere

Solution: Local Parameterization
e Current normal estimate
e Tangent parameterization
e New variables u, v
e Renormalize

e Non-linear optimization

e No degeneracies 1w, v) = ny +u-tangent,

+ v-langent,

[Hoffer et al. 04]
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Optimization on SO(3)

Orthonormal matrices
e Local, 1st order, non-degenerate parametrization:

0
(t) “ 7 A;=Aqexp(Cx))
“B -y 0 = A, (I+ C")

e Optimize parameters a, [3, v, then recompute A,
e Compute initial estimate using [Horn 87]

tangent,

> tangent,

c.f: normal»
optimization
n(u,v) = ny+u-langent,

+v-tangent,
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The Euler Lagrange Equation
(some more math)



The Euler-Lagrange Equation

Theoretical Result:

e Anintegral energy minimization problem can be reduced
to a differential equation.

 We look at energy functions of a specific form:
f:[la,b] > R

E(f)=[F(x, f(x), f'(x))dx

= fis the unknown function
= Fisthe energy at each point x to be integrated

= F depends (at most) on the position x, the function value f(x) and
the first derivative f'(x).
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The Euler-Lagrange Equation

Now we look for a minimum:

e Necessary condition:

. "i"E(f)zo (critical point)

df
e In order to compute this:
= Approximate f by a polygon (finite difference approximation)

© FE (b Vi), e (0 7))
= Equally spaced: x;—x,, = h

Y10

1) Vs
3 Ya Vs Ve Y7 s

Y1
(Can be formalized more precisely
using functional derivatives)
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The Euler-Lagrange Equation

Minimum condition:
E(f)=JF(X,f(X),f (x))dx

Yy Y10
V=Y 2y y &
E(f)~E(y)= ZF(X Vi hl_lj Y, Ve Yo V7 8

()’1 a )E
:Zva(Xi'yi'yi_yilj

i h

) 0 N

! Vi=Via No| 1 Vi—=Vii )
— aFX'; i) : : +a _F Xi’ i’

> (,yl hj? gh(y hj?
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The Euler-Lagrange Equation

Minimum condition:

0 0
L L Vi—yia Vol A1 Yi=Via | -
VyE —Z 52F(Xi,y,-, h ] 1 +63 ZF(Xi’yi’ h j 1
=2 : :
L 0 ’ -
ith entry:

i~ Yi— Vi 1 Yiv1n — Vi Yi— Vi
a)’iE:aZF[Xi’yi' h 1j_h[83F£Xi»yz" 1h ]_aBF(xi'yi' h 1]]

Letting h — O, we obtain the continuous Euler-Lagrange
differential equation:

52F(X,f(X),f'(X))—d%@gF(X;f(X),f'(X)) =0
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The Euler-Lagrange Equation

AN p
52F(X,f(X),f'(X))—EﬁgF(X,f(X),f'(XD =0

(at every point x)
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Example

Example: Harmonic Energy
£ 4 100 o
F(x, f(x), f'(x))= f'(x)°

azF(X,f(X),f'(X))—j—x531”(><;J’(><),f'(?<)) =0

0220, (/) =0

d . d
S0-——2—f(x)=0
dx dxf()
dZ
& —f(x)=0
dxzf()
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Generalizations

Multi-dimensional version:
fR"2Q0->R

E(f)= [Floty or X4 f(X),0,, f(X), 0, F(X))dx, ..dx,

Necessary condition for extremum:

6f (X) ,Z:‘dx 6f

\fx,. :=aif(x)
Xi

This is a partial differential equation (PDE).
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Example

Example: General Harmonic energy

E(harmonic)(f) _ J'(Vf(x))z dx

Euler Lagrange equation:

o f(xX)+..+ o

2 2
OX, OX 4

Af(X)=[ f(X)]=0
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Summary

Euler Lagrange Equation:
e Converts integral minimization problem into ODE or PDE.

e Gives a necessary, but not sufficient condition for
extremum (critical “point”, read: function f)
e Application:
= From a numerical point of view, this does not buy us much.

— We can usually directly optimize the integral expression.

— Similarly complex to compute (boundary value problem for a
PDE vs. variational problem).

= Analytical tool
— Helps understanding the minimizer functions.

71



Animation Reconstruction



Variational Animation Modeling

l f(x,t) — deformation field
)

X — point on urshape S
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Variational Framework

E(f) — Ematch (f) + (Engld + Evolume Eaccel + Evelocity) (f)
H_J J

constraints deformatlon

E,on(0) =YY dist(d,, ()Y

t=1i=1

Ea®)= [, "V 80,01 dx

V(S)

Eyume)= [,y )V, £0x,6) ~ 1] dx

V(S)

Eaccel(f) J.a)acc (X)(if(x t)]

eloczty(f) J.C() eloczty(x)( f(X t)j
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Meshless Modeling of
Deformable Shapes

and their Motion

Bart Adams'? Maks Ovsjanikov! Michael Wand?
Hans-Peter Seidel* Leonidas J. Guibas!

IStanford University
2Katholieke Universiteit Leuven
*Max Planck Center for Visual Computing and Communication
*Max Planck Institut Informatik




Data Set:
"Popcorn Tin"

94 frames
data: 53K points/frame
rec: 25K points /frame

[M. Wand, B. Adams, M. Ovsjanikov, M. Bokeloh, A. Berner,
P. Jenke, L. Guibas, H.-P. Seidel, A. Schilling, 2008] (data set courtesy of P. Phong, Stanford. U.)



