
Variational Modeling

Statistical Geometry Processing
Winter Semester 2011/2012

Variational Modeling
Basic Techniques

 3

Bayesian Approach

P(S |D) =
P(D| S) P(S)

P(D)

prior assumptions measurement model
(“likelihood”)

optimize (best S)

Candidate reconstruction S –

Measured data D –

 4

Calculus of Variation

Basic Idea:

• We look at a set of functions f: S  D

• We define an “energy functional” E: (S  D)  

 A functional assigns real numbers to functions

 Each function gets a “score”

 “Energy” means: the smaller the better

• We set up additional requirements (“constraints”) on f.

 Soft constraints  violation increases energy.

 Hard constraints  violation not allowed.

• We then compute the function(s) f that minimize E.

 5

Calculus of Variation

Very general framework:

• A lot of problems can be directly formulated as variational
problems.

• Example 1:

 We are looking for a curve.

 It should be as smooth as possible (energy = non-smoothness).

 It should go through a number of points (hard constraints).

E large
E small

constraints

 6

Calculus of Variation

Another example:

• Problem: We want to go to the moon.

• Given:

 Orbits of moons, planets and star(s).

 Flight conditions (athmosphere, gravitation of stellar bodies)

• Unknowns:

 Throttle (magnitude, direction) from rocket motors (vector
function)

• Energy function:

 Usage of rocket fuel (the fewer the better)

 Perhaps: Overall travel time (maybe not longer than a week)

 7

Calculus of Variation

To the moon:

• Constraints:

 We want to start in Cape Canaveral (upright trajectory) and end
up on the moon.

 We do not want to hit moons or planets on our way.

 We want to approach the moon at no more than 20 km/h
relative speed upon touchdown.

 The rocket motor has a limited range of forces it can create (not
more than a certain thrust, no backward thrust)

So flying to the moon is just minimizing a functional.
(ok, this is slightly simplified)

 8

A Simple Example

Simple example: variational splines

• Energy:

 We want smooth curves

 Smooth translates to minimum curvature

 Quadratic penalty:



curve

2|)(|)(dttcurvaturefE f

 9

A Simple Example

Simple example: variational splines

• Energy:

 Problem: curvature is non-linear

 Easier to minimize: second derivatives

 









curve

2

2

2

)()(dtt
dt

d
fE f

 10

A Simple Example

Simple example: variational splines

• Soft constraints

 Parameter values t1,...,tn at which we
should approximate points p1, ..., pn:

  controls (lack of) smoothness.

 












n

i
ii

t

tt

tdtt
dt

d
fE

n

1

2

2

2

2

)()()(
1

pff 

 11

A Simple Example

Simple example: variational splines

• Soft constraints

 Specify the accuracy by error quadrics Q1, ..., Qn:

   












n

i
iiiii

t

tt

ttdtt
dt

d
fE

n

1

T

2

2

2

)()()()(
1

pfQpff

 12

Rank-Deficient Quadrics

The rank deficient error quadric trick:

• A rank-1 matrix constraints the curve in one direction only

• E.g.: Point-to-surface constraints

n
 TnnQ i

ti

 13

Numerical Treatment

Numerical computation:

• No closed form solution

 Discretize (finite dimensional function space)

 Solve for coefficients (coordinate vector in this function space)

 14

Finite Differences

FD solution:

• Represent curve as array of k values:

• Unknowns are the curve points y1, ..., yk

t 0 0.1 0.2 ... 7.4 7.5

y y0 y1 y2 ... Y74 y75

y1

y2

yk

 15

Discretized Energy Function

Discretized Energy Function:

• Energy is a squared linear expression

 Quadratic discrete objective function

• Constraints are quadratic by construction

• Solution by linear system

   

   
















 












n

i
itindexiitindex

k

i

iiidiscr

n

i
iiiii

t

tt

ii

n

h
fE

ttdtt
dt

d
fE

1
)(

T

)(

2

1
2

11)(

1

T

2

2

2

2
)(

)()()()(
1

pyQpy
yyy

pfQpff

(neglected here: handling boundary values)

 16

Summary

Summary:

• Variational approaches look like this:

• Connection to statistics:

 Bayesian maximum a posteriori estimation

 E(data) is the data likelihood (log space)

 E(regularizer) is a prior distribution (log space)

s}constraint hard satifies |{

 ,)()()(

),(minarg compute

)()(

ffFf

fEfEfE

fE

rregularizedata

Ff







Variational Toolbox
Data Fitting, Regularizer Functionals,

Discretizations

 18

Toolbox

In the following:

• We will discuss...

 ...useful standard functionals.

 ...how to model soft constraints.

 ...how to model hard constraints.

 ...how to discretize the model.

• Then snap & click your favorite custom variational
modeling scheme.

• (Click & snap means: add together to a composite energy)

Functionals

 20

Functionals

Standard Functional #1: Function norm

• Given a function f: m    n

• Minimize:

• Function values should not become too large

• Often useful to avoid numerical problems

 Adding E(zero) to quadratic energy:
smallest eigenvalue bounded by  ( condition number)

 System always solvable




 xxf dfE zero 2)()()(

 21

Functionals

Standard Functional #2: Harmonic energy

• Given a function f: m    n

• Minimize:

• Differences to neighboring points as small as possible

• Appears all the time in physics & engineering

 


 xxf dfE harmonic 2)()()(

 22

Harmonic Energy

Example: Heat equation

• Metal plate

• Hard constraints:

 Heat source

 Heat sink

• Final heat distribution?

 Heat flow tends to equalize temperature.

– Stronger heat flow for larger temperature gradients.

 Gradients become as small as possible.

heat sink heat source

 23

Harmonic Energy

Example: Harmonic energy

• Curves that minimize the harmonic energy:

 Shortest path, a.k.a. polygons

• Two-dimensional parametric surface:

 24

Surface Example

Surface fitting with Laplacian Regularizer:

initialization result

Data attraction: point-to-plane, Gaussian window
 Regularizer: minimize triangle edge length

 25

Functionals

Standard Functional #3: Thin plate spline energy

• Given a function f: m    n

• Minimize:

• Objective: minimize integral second derivatives
(approx. curvature)

• “Be smooth”:

 Yields smooth curves & surfaces

 A true curvature based energy is rarely used (non-quadratic)


   

















 xxff d

xx
E

m

i

m

j ji

TSS

1 1

2
2

)()()(

 26

Energies for Vector Fields

Vector fields:

• Now consider volume deformations: n  n

• Think of an object moving (over time).

 f(x) describes its deformation.

 f(x,t) describes its motion over time.

  n f()  n

f: n  n

 27

Functionals

Standard Functional #4: Green’s deformation tensor
• Given a function f: n    n

• Minimize:

• Objective: minimize metric distortion
 First fundamental form

• Physically-based deformation modeling:
 Invariant under rigid transformations.

 Bending, scaling, shearing is penalized.

 Energy is non-quadratic (4-th order).

 99 Matrix M encodes material properties (often M = I).

 


 xIffMf dE
F

deform
2

T)()(

 28

Functionals

Standard Functional #5: Volume preservation
• Given a function f: n    n

• Minimize:

• Objective: minimize local volume changes

• This energy tries to preserve the volume at any point.

 Incompressible materials (for example fluids)

 Invariant under rigid transformations

 Non-quadratic (6th-order in 3D)

 


 xff dE volume 2)(1)det()(

 29

Functionals

Standard Functional #6: Infinitesimal volume preservation
• Velocity v: n    n

• Minimize:

• Objective: minimize local volume changes in a velocity
field

• Difference to the previous case:
 The vectors are instantaneous motions (v(x) = d/dt f(x,t))

 A divergence free (time dependent) vector field will not
introduce volume changes

 Linear, but works only for small time steps

 Large (rotational) displacements are not covered

  





















 xxvxvxxvv d

xx
dE

n

volume

2

1

2)()(...)()(div)(

 30

Functionals

Standard Functionals #7 & #8: Velocity & acceleration
• Given a function v: (n  )    n

• Minimize:

• Objective: minimize velocity / acceleration

• Models air resistance, inertia.


























 dtdt

dt

d
Edtdt

dt

d
E accvelocity xxffxxff

2

2

2
)(

2

)(),()(,),()(

Soft Constraints

 32

Soft Constraints

Penalty functions
• Uniform
• General quadrics
• Differential constraints

Types of soft constraints
• Point-wise constraints
• Line / area constraints

Constraint functions
• Least-squares
• M-estimators

 33

Uniform Soft Constraints

Uniform, point-wise soft constraints:
• Given a function f: n    n

• Minimize:

 




n

i
iii

constr qE
1

2)()()(yxff

constraint weights (certainty)

prescribed values (x,y)i

 34

Uniform Soft Constraints

General quadratic, point-wise soft constraints:
• Given a function f: n    n

• Minimize:

   




n

i
iiiii

constrE
1

T)()()()(yxfQyxff

constraint weights (general quadratic form, non-negative)

prescribed values (x,y)i

 35

Uniform Soft Constraints

Differential constraints:
• Given a function f: n    n

• Minimize:

     




n

i
iiiii

constr DDDDE
1

T)()()()(yxfQyxff

constraint weights (general quadratic form, non-negative)

prescribed values (x,Dy)i

Differential operator:

































mmkm

k

ii

ii

xx

xx

D

,,1

1,11,1

...

...



This is still a quadratic constraints ( linear system).

 36

Examples

Examples of differential constraints:

• Prescribe normal orientation of a surface

• Prescribe rotation of a deformation field

• Prescribe velocity or acceleration of a particle trajectory

2

)(

1

)(,:





































 nfff v

u

constr qE 

2)()(,:
F

constr qE Rfff   

 2)(),(),(),()(,),(,: tttxqEt constr xaxffposxff   

 37

Line / Area Soft Constraints

Line and area constraints:
• Given a function f: n    n

• Minimize:

• A.k.a: “transfinite constraints”

   



A

constrE)()()()()()(
T)(xyxfxQxyxff

quadric error weights (may be position dependent)

prescribed values y(x) (function of position x)

area A   on which the constraint is placed (line, area, volume...)

 38

Constraint Functions

Constraint Functions:
• Typical: quadratic constraints E(x) = f (x)2

 Easy to optimize (linear system)

 Well-defined critical point (gradient vanishes)

 However: sensitive to outliers

• Alternatives for bad data:
 L1-norm constraints (E(x) = |f (x)|)

– more robust

– still convex, i.e. can be optimized

 Truncated constraints

– even more robust

– non-convex, difficult to optimize

Discretization

 40

Finite Element Discretization

Finite-element discretization:

• Finite dimensional space spanned by basis functions

• Finite differences (FD)

 Special case

 Grid of piecewise constant basis

• General approach:








k

i
ii

f

xbxf

fEfE

1

)()(
~

)
~

(minarg)(minarg






 41

Finite Element Discretization

Derive a discrete equation:

• Just plug in the discrete f.

• Then minimize the it over the .

• Compute the critical point(s):

• Quadratic functionals: linear system.

• Non-linear, smooth functionals:
Newton, Gauss-Newton, LBFGS, or the similar

~

 
  0)(
~

:...1

min)(
~









xfEki

xfE

i







 42

Example

(Abstract) example:

• Minimize square integral of a differential operator

• Quadratic differential constraints

• Yields quadratic optimization problem in the coefficients

 43

Example

(Abstract) example (cont):

   

 

      

  

  



 

   

  

  



 





















































n

i
i

k

i
ii

k

i

k

j
jiji

n

i
i

k

i
ii

k

i
ii

n

i
i

k

i
ii

k

i
ii

k

i
ii

n

i
ii

yxbDdxxbDxbD

yxbDdxxbD

yxbDdxxbDfE

xbxf

yxfDdxxfDfE

1

2

1

)2(

1 1

)1()1(

1

2

1

)2(

2

1

)1(

1

2

1

)2(

2

1

)1(

1

1

2)2(2)1(

)()()(

)()(

)()()
~

(

)()(
~

)()()(















Numerical Aspects

 45

How to solve the problems?

Solving the discretized variational problem:

• Quadratic energy and quadratic constraints:

 The discretization is a quadratic function as well.

 The gradient is a linear expression.

 The matrix in this expression is symmetric.

 If the problem is well-defined, the matrix is semi-positive
definite.

 It is usually very sparse (coefficients of basis functions only
interact with their neighbors, as far as their support overlaps).

 We can use iterative sparse system solvers:

– Most frequently used: conjugate gradients (needs SPD
matrix). CG is available in GeoX.

 46

How to solve the problems?

Solving the discretized variational problem:

• Non linear energy functions:
 If the function is convex, we can get to a critical point that is the global

minimum.

 In general, we can only find a local optimum (or critical point).

– Need a good initialization

 Newton optimization:

– 2nd order Taylor expansions (Hessian matrix, gradient)

– Iteratively solve linear problems.

– Typically, Hessian matrices are sparse. Use conjugate gradients to
solve for critical points.

 Non-linear conjugate gradients: with line search (faster than simple
gradient decent).

 LBFGS: Black box-solver, only needs gradient.

Hard Constraints

 48

Hard Constraints

Hard Constraints:

• Properties of the solution to be met exactly

• Three options to implement hard constraints:

 Strong soft constraints (easy, but not exact)

 Variable elimination (exact, but limited)

 Lagrange multipliers (most complex and general method)

 49

Hard Soft Constraints

Simplest Implementation:

• Soft constraints with large weight

• A few serious problems:

 Technique is not exact

– Might be not acceptable for some applications

 The stronger the constraints, the larger the weight. This means:

– The condition number of the quadric matrix (condition of
the Hessian in the non-linear case) becomes worse.

– At some point, no solution is possible anymore.

– Iterative solvers are slowed down (e.g. conjugate gradients)

)10 (say large very with),()()(6)()( fEfEfE sconstraintrregularize 

 50

Variable Elimination

Idea: Variable elimination

• We just replace variables by fixed numbers.

• Then solve the remaining system.

Example:

4.0

2.5

4.5

y1
y2

y3
y4 y5 y6

y7
y8

y9

f ’(x0) = h-1(y1 – 4.0)

f ’(x3) = h-1(y4 – y3)

 51

Variable Elimination

Advantages:
• Exact constraints

• Conceptually simple

Problems:
• Only works for simple constraints (variable = value)

• Need to augment system
 Not easy to implement generically

• Does not work for FE methods (general basis functions)
 Values are sum of scaled basis functions

 52

Lagrange Multipliers

Most general technique: Lagrange multipliers

• Works for complex, composite constraints

• General basis functions

• Exact solutions (no approximation)

 53

Lagrange Multipliers

Here is the idea:

• Assume we want to optimize E(x1, ..., xn) subject to an
implicitly formulated constraint g(x1, ..., xn) = 0.

• This looks like this:

E g 0)(,  xggE 

E

E g

E

g

 54

Lagrange Multipliers

Formally:

• Optimize E(x1, ..., xn) subject to g(x1, ..., xn) = 0.

• Formally, we want:

• We get a local optimum for:

• A critical point of this equation
satisfies both
and .

gE  

0)(and)()( xxx ggE 

  0)(,,...,:i.e.

0)(

)()()(

1

,







x

x

xxx

x

LG

LG

gELG

nxx 





0)(xg
)()(xx gE  

E

g

 55

Example

Example: Optimizing a quadric subject to a linear
 equality constraint

• We want to optimize:

• Subject to:

We obtain:

•

• Linear system:

bxAxxx  T)(E

0)( ng mxx

 nxELG  mxbxAxxgxx  T)()()(

 
  nLG

LG





mxx

mbAxxx

)(

2)(



































n

b



x

m

mA

0

2
T

 56

Multiple Constraints

Multiple Constraints:

• Similar idea

• Introduce multiple “Lagrange multipliers” .

  0)(,...,,,...,:i.e.

0)(

)()()(

0)(:...1 :to subject

min)(

11

,

1














x

x

xxx

λx

LG

LG

gELG

xgki

xE

knxx

k

i
ii

i





Lagrangian objective function:

 57

Multiple Constraints

Example: Linear subspace constraints

• subject to

•

• Linear system:

• Remark: M must have full rank for this to work.

bxAxxx  T)(E 0nMxx )(g

 



n

i
iii

n

i
ii nxELG

1

T

1

)()()(xmbxAxxgxx 




































n

b

λ

x

M

MA

0

2 T

 58

What can we do with this?

Multiple linear equality constraints:

• Constraint multiple function values, differential
properties, integral values

• Area constraints: Sample at each basis function of the
discretization and prescribe a value

• Need to take care:

 We need to make sure that the constraints are linearly
independent at any time

Inequality constraints:

• There are efficient quadratic programming algorithms.
(Idea: turn on and off the constraints intelligently.)

Manifold Constraints

 60

Optimization on Unit Sphere

Solution: Local Parameterization

• Current normal estimate

• Tangent parameterization

• New variables u, v

• Renormalize

• Non-linear optimization

• No degeneracies

tangentu

tangentv

n0

n(u,v)

v

u

tangentv

tangentunvun



 0),(

[Hoffer et al. 04]

 61

Optimization on SO(3)

Orthonormal matrices

• Local, 1st order, non-degenerate parametrization:

• Optimize parameters, , , then recompute A0

• Compute initial estimate using [Horn 87]





















0

0

0
)(






t

iC

)(

)exp(

)(

0

0

t

i

ii

I 



CA

CAA





c.f: normal
optimization

The Euler Lagrange Equation
(some more math)

 63

The Euler-Lagrange Equation

Theoretical Result:

• An integral energy minimization problem can be reduced
to a differential equation.

• We look at energy functions of a specific form:

 f is the unknown function

 F is the energy at each point x to be integrated

 F depends (at most) on the position x, the function value f (x) and
the first derivative f'(x).

],[: baf


b

a

dxxfxfxFfE))('),(,()(

 64

The Euler-Lagrange Equation

Now we look for a minimum:

• Necessary condition:

• (critical point)

• In order to compute this:

 Approximate f by a polygon (finite difference approximation)

 f = ((x1, y1), ..., (xn, yn))

 Equally spaced: xi – xi-1 = h

0)(
""

fE
df

d

^

y6

y1
y2

y3
y4 y5 y7

y8
y9

y10

(Can be formalized more precisely
using functional derivatives)

 65

The Euler-Lagrange Equation

Minimum condition:

y6

y1
y2

y3
y4 y5 y7

y8
y9

y10







 






 




n

i

ii
ii

b

a

h

yy
yxFEfE

dxxfxfxFfE

2

1,,)(
~

)(

))('),(,()(

y

 
























































 



























 









 




n

i

ii
ii

ii
ii

n

i

ii
ii

yy

h

yy
yxF

hh

yy
yxF

h

yy
yxF

EE
n

2

0

1

1

0

1
3

0

1

0

0

1
2

2

1

,,
1

,,

,,

~
,...,

~
1









y

y

 66

The Euler-Lagrange Equation

Minimum condition:


















 








 








 













































 



























 








h

yy
yxF

h

yy
yxF

hh

yy
yxFE

i

h

yy
yxF

hh

yy
yxFE

ii
ii

ii
ii

ii
iiy

n

i

ii
ii

ii
ii

i

1
3

1
3

1
2

2

0

1

1

0

1
3

0

1

0

0

1
2

,,,,
1

,,
~

:entry th

,,
1

,,
~









y

0))('),(,())('),(,(32  xfxfxF
dx

d
xfxfxF

Letting h  0, we obtain the continuous Euler-Lagrange
differential equation:

 67

The Euler-Lagrange Equation

0))('),(,())('),(,(32  xfxfxF
dx

d
xfxfxF

f '(x)

f

(at every point x)

f (x)

x

 68

Example

Example: Harmonic Energy

 









b

a

dxxf
dx

d
fE

2

)()(

2)('))('),(,(xfxfxfxF 

0)(

0)(20

0))('(0

0))('),(,())('),(,(

2

2

2
)('

32









xf
dx

d

xf
dx

d

dx

d

xf
dx

d

xfxfxF
dx

d
xfxfxF

xf

 69

Generalizations

Multi-dimensional version:

 df :

 


 dxxd dxdxffxfxxFfE
d

...)(),...,(),(,,...,)(11 1
xx

Necessary condition for extremum:

0
)(1













d

i xi i
f

E

dx

d

f

E

x

)(: xf
x

f
i

xi 




This is a partial differential equation (PDE).

 70

Example

Example: General Harmonic energy

 


 xxf dfE harmonic 2)()()(

0)(...)()(
2

2

2

1

2
























 xxxf f

x
f

x d

Euler Lagrange equation:

 71

Summary

Euler Lagrange Equation:
• Converts integral minimization problem into ODE or PDE.

• Gives a necessary, but not sufficient condition for
extremum (critical “point”, read: function f)

• Application:
 From a numerical point of view, this does not buy us much.

– We can usually directly optimize the integral expression.

– Similarly complex to compute (boundary value problem for a
PDE vs. variational problem).

 Analytical tool

– Helps understanding the minimizer functions.

Animation Reconstruction

 73

Variational Animation Modeling

f (x, t) – deformation field

t = 0 t = 1 t = 2

x – point on urshape S

S

f
f

 74

Variational Framework

 
)(

2

),(),()()(
SV

F

T
rigidrigid dxttxE Ixfxff xx

  
)(

2
1),()()(

SV

volvolume dxtxE xff x

 


















S

accaccel dxt
t

xE

2

2

2

),()()(xff 

 













S

velocityvelocity dxt
t

xE

2

),()()(xff 


 


T

t

n

i
imatch

t

SfddistE
1 1

2))(,()(f

))(()()(

ndeformatiosconstraint

fff
   velocityaccelvolumerigidmatch EEEEEE 

[B. Adams, M. Ovsjanikov, M. Wand, L. Guibas, H.-P. Seidel, SCA 2008]

[B. Adams, M. Ovsjanikov, M. Wand, L. Guibas, H.-P. Seidel, SCA 2008]

[M. Wand, B. Adams, M. Ovsjanikov, M. Bokeloh, A. Berner,
 P. Jenke, L. Guibas, H.-P. Seidel, A. Schilling, 2008] (data set courtesy of P. Phong, Stanford. U.)

