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Bayesian Approach 

P(S |D) = 
P(D| S ) P(S ) 

P(D) 

prior assumptions measurement model 
(“likelihood”) 

optimize (best S) 

Candidate reconstruction S  – 

Measured data D  – 
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Calculus of Variation 

Basic Idea: 

• We look at a set of functions f: S  D 

• We define an “energy functional” E: (S  D)   

 A functional assigns real numbers to functions 

 Each function gets a “score” 

 “Energy” means: the smaller the better 

• We set up additional requirements (“constraints”) on f. 

 Soft constraints  violation increases energy. 

 Hard constraints  violation not allowed. 

• We then compute the function(s) f that minimize E. 
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Calculus of Variation 

Very general framework: 

• A lot of problems can be directly formulated as variational 
problems. 

• Example 1: 

 We are looking for a curve. 

 It should be as smooth as possible (energy = non-smoothness). 

 It should go through a number of points (hard constraints). 

E large 
E small 

constraints 
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Calculus of Variation 

Another example: 

• Problem: We want to go to the moon. 

• Given: 

 Orbits of moons, planets and star(s). 

 Flight conditions (athmosphere, gravitation of stellar bodies) 

• Unknowns: 

 Throttle (magnitude, direction) from rocket motors (vector 
function) 

• Energy function: 

 Usage of rocket fuel (the fewer the better) 

 Perhaps: Overall travel time (maybe not longer than a week) 
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Calculus of Variation 

To the moon: 

• Constraints: 

 We want to start in Cape Canaveral (upright trajectory) and end 
up on the moon. 

 We do not want to hit moons or planets on our way. 

 We want to approach the moon at no more than 20 km/h 
relative speed upon touchdown. 

 The rocket motor has a limited range of forces it can create (not 
more than a certain thrust, no backward thrust) 

So flying to the moon is just minimizing a functional. 
(ok, this is slightly simplified) 
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A Simple Example 

Simple example: variational splines 

• Energy: 

 We want smooth curves 

 Smooth translates to minimum curvature 

 Quadratic penalty: 

 


curve
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A Simple Example 

Simple example: variational splines 

• Energy: 

 Problem: curvature is non-linear 

 Easier to minimize: second derivatives 
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A Simple Example 

Simple example: variational splines 

• Soft constraints 

 Parameter values t1,...,tn at which we  
should approximate points p1, ..., pn: 

 

 

 

  controls (lack of) smoothness. 
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A Simple Example 

Simple example: variational splines 

• Soft constraints 

 Specify the accuracy by error quadrics Q1, ..., Qn: 
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Rank-Deficient Quadrics 

The rank deficient error quadric trick: 

• A rank-1 matrix constraints the curve in one direction only 

• E.g.: Point-to-surface constraints 

n 
 TnnQ i

ti 
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Numerical Treatment 

Numerical computation: 

• No closed form solution 

 Discretize (finite dimensional function space) 

 Solve for coefficients (coordinate vector in this function space) 



 14 

Finite Differences 

FD solution: 

• Represent curve as array of k values: 

 

 

 

• Unknowns are the curve points y1, ..., yk 

t 0 0.1 0.2 ... 7.4 7.5 

y y0 y1 y2 ... Y74 y75 

y1 

y2 

yk 
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Discretized Energy Function 

Discretized Energy Function: 

• Energy is a squared linear expression 

 Quadratic discrete objective function 

• Constraints are quadratic by construction 

• Solution by linear system 
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Summary 

Summary: 

• Variational approaches look like this: 

 

 

 

 

• Connection to statistics: 

 Bayesian maximum a posteriori estimation 

 E(data) is the data likelihood (log space) 

 E(regularizer) is a prior distribution (log space) 
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Variational Toolbox 
Data Fitting, Regularizer Functionals, 

Discretizations 
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Toolbox 

In the following: 

• We will discuss... 

 ...useful standard functionals. 

 ...how to model soft constraints. 

 ...how to model hard constraints. 

 ...how to discretize the model. 

• Then snap & click your favorite custom variational 
modeling scheme. 

• (Click & snap means: add together to a composite energy) 



Functionals 
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Functionals 

Standard Functional #1: Function norm 

• Given a function f: m     n 

• Minimize: 

 
 

• Function values should not become too large 

• Often useful to avoid numerical problems 

 Adding E(zero) to quadratic energy: 
smallest eigenvalue bounded by  ( condition number) 

 System always solvable 
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Functionals 

Standard Functional #2: Harmonic energy 

• Given a function f: m     n 

• Minimize: 

 

 

• Differences to neighboring points as small as possible 

• Appears all the time in physics & engineering 
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Harmonic Energy 

Example: Heat equation 

• Metal plate 

• Hard constraints: 

 Heat source 

 Heat sink 

• Final heat distribution? 

 Heat flow tends to equalize temperature. 

– Stronger heat flow for larger temperature gradients. 

 Gradients become as small as possible. 

heat sink heat source 
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Harmonic Energy 

Example: Harmonic energy 

• Curves that minimize the harmonic energy: 

 Shortest path, a.k.a. polygons 

 

 

• Two-dimensional parametric surface: 
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Surface Example 

Surface fitting with Laplacian Regularizer: 

initialization result 

Data attraction: point-to-plane, Gaussian window 
 Regularizer: minimize triangle edge length 
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Functionals 

Standard Functional #3: Thin plate spline energy 

• Given a function f: m     n 

• Minimize: 

 

 

• Objective: minimize integral second derivatives 
(approx. curvature) 

• “Be smooth”: 

 Yields smooth curves & surfaces 

 A true curvature based energy is rarely used (non-quadratic) 
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Energies for Vector Fields 

Vector fields: 

• Now consider volume deformations: n  n 

• Think of an object moving (over time). 

 f(x) describes its deformation. 

 f(x,t) describes its motion over time. 

  n f()  n 

f: n  n 
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Functionals 

Standard Functional #4: Green’s deformation tensor 
• Given a function f: n     n 

• Minimize: 

 

 

• Objective: minimize metric distortion 
 First fundamental form 

• Physically-based deformation modeling: 
 Invariant under rigid transformations. 

 Bending, scaling, shearing is penalized. 

 Energy is non-quadratic (4-th order). 

 99 Matrix M encodes material properties (often M = I). 
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Functionals 

Standard Functional #5: Volume preservation 
• Given a function f: n     n 

• Minimize: 

 

 

• Objective: minimize local volume changes 

• This energy tries to preserve the volume at any point. 

 Incompressible materials (for example fluids) 

 Invariant under rigid transformations 

 Non-quadratic (6th-order in 3D) 
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Functionals 

Standard Functional #6: Infinitesimal volume preservation 
• Velocity v: n     n 

• Minimize: 

 

 

• Objective: minimize local volume changes in a velocity 
field 

• Difference to the previous case: 
 The vectors are instantaneous motions (v(x) = d/dt f(x,t)) 

 A divergence free (time dependent) vector field will not 
introduce volume changes 

 Linear, but works only for small time steps 

 Large (rotational) displacements are not covered 
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Functionals 

Standard Functionals #7 & #8: Velocity & acceleration 
• Given a function v: (n  )      n 

• Minimize: 

 

 

• Objective: minimize velocity / acceleration 

• Models air resistance, inertia. 
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Soft Constraints 
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Soft Constraints 

Penalty functions 
• Uniform 
• General quadrics 
• Differential constraints 

Types of soft constraints 
• Point-wise constraints 
• Line / area constraints 

Constraint functions 
• Least-squares 
• M-estimators 
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Uniform Soft Constraints 

Uniform, point-wise soft constraints: 
• Given a function f: n     n 

• Minimize: 
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Uniform Soft Constraints 

General quadratic, point-wise soft constraints: 
• Given a function f: n     n 

• Minimize: 
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Uniform Soft Constraints 

Differential constraints: 
• Given a function f: n     n 

• Minimize: 
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This is still a quadratic constraints ( linear system). 
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Examples 

Examples of differential constraints: 

• Prescribe normal orientation of a surface 

 

 

• Prescribe rotation of a deformation field 

 

• Prescribe velocity or acceleration of a particle trajectory 

2

)(

1

)(,:





































 nfff v

u

constr qE 

2)( )(,:
F

constr qE Rfff   

 2)( ),(),(),()(,),(,: tttxqEt constr xaxffposxff   



 37 

Line / Area Soft Constraints 

Line and area constraints: 
• Given a function f: n     n 

• Minimize: 

 

 

 

 

 

• A.k.a: “transfinite constraints” 
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Constraint Functions 

Constraint Functions: 
• Typical: quadratic constraints E(x) = f (x)2 

 Easy to optimize (linear system) 

 Well-defined critical point (gradient vanishes) 

 However: sensitive to outliers 

• Alternatives for bad data: 
 L1-norm constraints (E(x) = |f (x)|) 

– more robust 

– still convex, i.e. can be optimized 

 Truncated constraints 

– even more robust 

– non-convex, difficult to optimize 



Discretization 
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Finite Element Discretization 

Finite-element discretization: 

• Finite dimensional  space spanned by basis functions 

• Finite differences (FD) 

 Special case 

 Grid of piecewise constant basis 

• General approach: 
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Finite Element Discretization 

Derive a discrete equation: 

• Just plug in the discrete f. 

• Then minimize the it over the . 

• Compute the critical point(s): 

 

 

 

• Quadratic functionals: linear system. 

• Non-linear, smooth functionals: 
Newton, Gauss-Newton, LBFGS, or the similar 
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Example 

(Abstract) example: 

• Minimize square integral of a differential operator 

• Quadratic differential constraints 

• Yields quadratic optimization problem in the coefficients 
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Example 

(Abstract) example (cont): 
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Numerical Aspects 
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How to solve the problems? 

Solving the discretized variational problem: 

• Quadratic energy and quadratic constraints: 

 The discretization is a quadratic function as well. 

 The gradient is a linear expression. 

 The matrix in this expression is symmetric. 

 If the problem is well-defined, the matrix is semi-positive 
definite. 

 It is usually very sparse (coefficients of basis functions only 
interact with their neighbors, as far as their support overlaps). 

 We can use iterative sparse system solvers: 

– Most frequently used: conjugate gradients (needs SPD 
matrix). CG is available in GeoX. 
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How to solve the problems? 

Solving the discretized variational problem: 

• Non linear energy functions: 
 If the function is convex, we can get to a critical point that is the global 

minimum. 

 In general, we can only find a local optimum (or critical point). 

– Need a good initialization 

 Newton optimization: 

– 2nd order Taylor expansions (Hessian matrix, gradient) 

– Iteratively solve linear problems. 

– Typically, Hessian matrices are sparse. Use conjugate gradients to 
solve for critical points. 

 Non-linear conjugate gradients: with line search (faster than simple 
gradient decent). 

 LBFGS: Black box-solver, only needs gradient. 



Hard Constraints 
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Hard Constraints 

Hard Constraints: 

• Properties of the solution to be met exactly 

• Three options to implement hard constraints: 

 Strong soft constraints (easy, but not exact) 

 Variable elimination (exact, but limited) 

 Lagrange multipliers (most complex and general method) 



 49 

Hard Soft Constraints 

Simplest Implementation: 

• Soft constraints with large weight 

 

• A few serious problems: 

 Technique is not exact 

– Might be not acceptable for some applications 

 The stronger the constraints, the larger the weight. This means:  

– The condition number of the quadric matrix (condition of 
the Hessian in the non-linear case) becomes worse. 

– At some point, no solution is possible anymore. 

– Iterative solvers are slowed down (e.g. conjugate gradients) 

)10 (say large very  with),( )()( 6)()(  fEfEfE sconstraintrregularize 
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Variable Elimination 

Idea: Variable elimination 

• We just replace variables by fixed numbers. 

• Then solve the remaining system. 

Example: 

4.0 

2.5 

4.5 

y1 
y2 

y3 
y4 y5 y6 

y7 
y8 

y9 

f ’(x0) = h-1(y1 – 4.0) 

f ’(x3) = h-1(y4 – y3) 
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Variable Elimination 

Advantages: 
• Exact constraints 

• Conceptually simple 

Problems: 
• Only works for simple constraints (variable = value) 

• Need to augment system  
 Not easy to implement generically 

• Does not work for FE methods (general basis functions) 
 Values are sum of scaled basis functions 
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Lagrange Multipliers 

Most general technique: Lagrange multipliers 

• Works for complex, composite constraints 

• General basis functions 

• Exact solutions (no approximation) 
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Lagrange Multipliers 

Here is the idea: 

• Assume we want to optimize E(x1, ..., xn) subject to an 
implicitly formulated constraint g(x1, ..., xn) = 0. 

• This looks like this: 

E g 0)(,  xggE 
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Lagrange Multipliers 

Formally: 

• Optimize E(x1, ..., xn) subject to g(x1, ..., xn) = 0. 

• Formally, we want: 

 

• We get a local optimum for: 

 

 

 

• A critical point of this equation 
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Example 

Example: Optimizing a quadric subject to a linear  
 equality constraint 

• We want to optimize: 

• Subject to: 

We obtain: 

•   

 

 
 

• Linear system: 
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Multiple Constraints 

Multiple Constraints: 

• Similar idea 

• Introduce multiple “Lagrange multipliers” . 

  0)(,...,,,...,:i.e.

0)(

)()()(

0)(:...1 :to subject

min)(

11

,

1














x

x

xxx

λx

LG

LG

gELG

xgki

xE

knxx

k

i
ii

i





Lagrangian objective function: 



 57 

Multiple Constraints 

Example: Linear subspace constraints 

•                                 subject to 

•   

 

• Linear system: 
 

• Remark: M must have full rank for this to work. 
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What can we do with this? 

Multiple linear equality constraints: 

• Constraint multiple function values, differential 
properties, integral values 

• Area constraints: Sample at each basis function of the 
discretization and prescribe a value 

• Need to take care: 

 We need to make sure that the constraints are linearly 
independent at any time 

Inequality constraints: 

• There are efficient quadratic programming algorithms. 
(Idea: turn on and off the constraints intelligently.) 



Manifold Constraints 
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Optimization on Unit Sphere 

Solution: Local Parameterization 

• Current normal estimate 

• Tangent parameterization 

• New variables u, v 

• Renormalize 

• Non-linear optimization 

• No degeneracies 

tangentu 

tangentv 

n0 

n(u,v) 

v

u

tangentv

tangentunvun



 0),(

[Hoffer et al. 04] 
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Optimization on SO(3) 

Orthonormal matrices 

• Local, 1st order, non-degenerate parametrization: 

 

 

 

• Optimize parameters, , , then recompute A0 

• Compute initial estimate using [Horn 87 ] 
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The Euler Lagrange Equation 
(some more math) 
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The Euler-Lagrange Equation 

Theoretical Result: 

• An integral energy minimization problem can be reduced 
to a differential equation. 

• We look at energy functions of a specific form: 

 

 

 

 f is the unknown function 

 F is the energy at each point x to be integrated 

 F depends (at most) on the position x, the function value f (x) and 
the first derivative f'(x). 
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The Euler-Lagrange Equation 

Now we look for a minimum: 

• Necessary condition: 

•                          (critical point) 
 

• In order to compute this: 

 Approximate f by a polygon (finite difference approximation) 

 f = ((x1, y1), ..., (xn, yn)) 

 Equally spaced: xi – xi-1 = h 
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""

fE
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d
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(Can be formalized more precisely 
using functional derivatives) 
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The Euler-Lagrange Equation 

Minimum condition: 
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The Euler-Lagrange Equation 

Minimum condition: 
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Letting h  0, we obtain the continuous Euler-Lagrange 
differential equation: 
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The Euler-Lagrange Equation 
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Example 

Example: Harmonic Energy 
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Generalizations 

Multi-dimensional version: 

 df :
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Necessary condition for extremum: 

0
)( 1













d

i xi i
f

E

dx

d

f

E

x

)(: xf
x

f
i

xi 




This is a partial differential equation (PDE). 
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Example 

Example: General Harmonic energy 
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Euler Lagrange equation: 
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Summary 

Euler Lagrange Equation: 
• Converts integral minimization problem into ODE or PDE. 

• Gives a necessary, but not sufficient condition for 
extremum (critical “point”, read: function f ) 

• Application: 
 From a numerical point of view, this does not buy us much. 

– We can usually directly optimize the integral expression. 

– Similarly complex to compute (boundary value problem for a 
PDE vs. variational problem). 

 Analytical tool 

– Helps understanding the minimizer functions. 



Animation Reconstruction 



 73 

Variational Animation Modeling 

f (x, t) – deformation field 

t = 0 t = 1 t = 2 

x – point on urshape S 

S 

f 
f 
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Variational Framework 
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